8 research outputs found

    Parameterised model checking of probabilistic multi-agent systems

    Get PDF
    Swarm robotics has been put forward as a method of addressing a number of scenarios where scalability and robustness are desired. In order to deploy robotic swarms in safety-critical situations, it is necessary to verify their behaviour. Model checking gives a possible approach to do this; however, with traditional model checking techniques only systems of a finite size can be considered. This presents an issue for swarm systems, where the number of participants in the system is not known at design-time and may be arbitrarily large. To overcome this, parameterised model checking (PMC) techniques have been developed which enable the verification of systems where the number of participants is not known until run-time. However, protocols followed by robotic swarms are often stochastic in nature, and this cannot be modelled with current PMC techniques. This is the gap that this thesis aims to overcome. In particular, two parameterised semantics for reasoning about multi-agent systems are extended to incorporate probabilities. One of these semantics is synchronous, whilst the other is interleaved. Abstract models which overapproximate the systems being considered are constructed using counter abstraction techniques. These abstract models are used to develop parameterised verification procedures for a number of specification logics on both bounded and unbounded traces. The decision procedures presented are shown to be sound, and in some cases also complete. Further, the techniques are extended to allow modelling of situations where agents may exhibit faulty behaviour, as well as scenarios where the strategic capabilities of the participants needs to be verified. The procedures are all implemented in a novel verification toolkit called PSV (Probabilistic Swarm Verifier), built on top of the probabilistic model checker PRISM. This toolkit is used to verify three case studies from both swarm robotics and other application domains.Open Acces

    OASIcs, Volume 66, ICCSW\u2718, Complete Volume

    No full text
    OASIcs, Volume 66, ICCSW\u2718, Complete Volum

    Front Matter, Table of Contents, Preface, Conference Organization

    No full text
    Front Matter, Table of Contents, Preface, Conference Organizatio

    4-Mb MOSFET-selected µtrench phase-change memory experimental chip

    No full text
    A ÎĽtrench Phase-Change Memory (PCM) cell with MOSFET selector and its integration in a 4-Mb experimental chip fabricated in 0.18-ÎĽm CMOS technology are presented. A cascode bitline biasing scheme allows read and write voltages to be fed to the addressed storage elements with the required accuracy. The high-performance capabilities of PCM cells were experimentally investigated. A read access time of 45 ns was measured together with a write throughput of 5 MB/s, which represents an improved performance as compared to NOR Flash memories. Programmed cell current distributions on the 4-Mb array demonstrate an adequate working window and, together with first endurance measurements, assess the feasibility of PCMs in standard CMOS technology with few additional process modules

    A multi-laboratory comparison of photon migration instruments and their performances: the BitMap exercise

    Get PDF
    Performance assessment and standardization are indispensable for instruments of clinical relevance in general and clinical instrumentation based on photon migration/diffuse optics in particular. In this direction, a multi-laboratory exercise was initiated with the aim of assessing and comparing their performances. 29 diffuse optical instruments belonging to 11 partner institutions of a European level Marie Curie Consortium BitMap were considered for this exercise. The enrolled instruments covered different approaches (continuous wave, CW; frequency domain, FD; time domain, TD and spatial frequency domain imaging, SFDI) and applications (e.g. mammography, oximetry, functional imaging, tissue spectroscopy). 10 different tests from 3 well-accepted protocols, namely, the MEDPHOT, the BIP, and the nEUROPt protocols were chosen for the exercise and the necessary phantoms kits were circulated across labs and institutions enrolled in the study. A brief outline of the methodology of the exercise is presented here. Mainly, the design of some of the synthetic descriptors, (single numeric values used to summarize the result of a test and facilitate comparison between instruments) for some of the tests will be discussed.. Future actions of the exercise aim at deploying these measurements onto an open data repository and investigating common analysis tools for the whole datase

    Multi-laboratory performance assessment of diffuse optics instruments: the BitMap exercise.

    Get PDF
    SIGNIFICANCE: Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH: The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS: This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5  %   over 1 h, and day-to-day reproducibility of <3  %  . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS: This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations
    corecore